An invariant tensor in $S^3(\mathfrak{g})$ for $\mathfrak{g} = \mathfrak{sl}(n), n \geq 3$

Ami Haviv

In this short note we describe a simple construction of a non-zero \mathfrak{g} -invariant tensor in $S^3(\mathfrak{g})$, where $\mathfrak{g} = \mathfrak{sl}(n), n \geq 3$. We learned of this construction from Eric Weinstein (with the help of Dror Bar-Natan). Since elements in $S^3(\mathfrak{g})$ are antipodally odd and the PBW isomorphism $S(\mathfrak{g})^{\mathfrak{g}} \cong U(\mathfrak{g})^{\mathfrak{g}}$ is antipode preserving, the Weinstein's tensor provides a counterexample to the author's unmotivated guess that the elements of $U(\mathfrak{g})^{\mathfrak{g}}$, for \mathfrak{g} semisimple, are antipodally even.

Let \mathfrak{g} be a classical simple complex Lie algebra in its standard representation as a Lie subalgebra of $\mathfrak{gl}(m)$, for some m. We endow the latter Lie algebra with the invariant metric $(X, Y) = \operatorname{tr}(XY)$. Recall that this metric remains non-degenerate when restricted to \mathfrak{g} . We use the induced metric on \mathfrak{g} to identify $\mathfrak{g} \cong \mathfrak{g}^*$.

We define the following tri-linear form on \mathfrak{g} :

$$(X, Y, Z) \longrightarrow (XY + YX, Z), \qquad X, Y, Z \in \mathfrak{g}.$$

This form is symmetric (because tr(ABC) = tr(CAB)) and \mathfrak{g} -invariant. (For example, take G to be the compact Lie group corresponding to the compact real form of \mathfrak{g} and use $tr(gAg^{-1}) = tr(A), g \in G$, to get G-invariance, which implies \mathfrak{g} -invariance.)

So we have the promised invariant symmetric tensor *provided* our tri-linear form is not identically zero. This is the case for $\mathfrak{g} = \mathfrak{sl}(n)$, $n \geq 3$: Take X = Y having their upper left 2×2 block equal to $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and all other entries are zero. Take Z to be the diagonal matrix diag $(1, 0, \ldots, 0, -1)$. We have $(X, Y, Z) \rightarrow 2 \neq 0$, as desired.

We now demonstrate that the construction "fails" for the other classical algebras — the symplectic and orthogonal Lie algebras (hence also for $\mathfrak{sl}(2) \cong \mathfrak{sp}(1)$). We only need to know that each of these algebras is defined as the set of matrices $X \in \mathfrak{gl}(m)$ satisfying

(1)
$$X^t A + A X = 0,$$

where A is a certain invertible matrix. Simple computations yield the following two results:

• If X, Y satisfy (1), then Z = XY + YX satisfies

• If X satisfies (1) and Z satisfies (2), then $(ZX)^t = -A(XZ)A^{-1}$, hence

 $\operatorname{tr}(XZ) = 0.$

Clearly, these results complete our demonstration.

Date: July 18, 2002.