An invariant tensor in $S^{3}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{s l}(n), n \geq 3$

Ami Haviv

In this short note we describe a simple construction of a non-zero \mathfrak{g}-invariant tensor in $S^{3}(\mathfrak{g})$, where $\mathfrak{g}=\mathfrak{s l}(n)$, $n \geq 3$. We learned of this construction from Eric Weinstein (with the help of Dror Bar-Natan). Since elements in $S^{3}(\mathfrak{g})$ are antipodally odd and the PBW isomorphism $S(\mathfrak{g})^{\mathfrak{g}} \cong U(\mathfrak{g})^{\mathfrak{g}}$ is antipode preserving, the Weinstein's tensor provides a counterexample to the author's unmotivated guess that the elements of $U(\mathfrak{g})^{\mathfrak{g}}$, for \mathfrak{g} semisimple, are antipodally even.

Let \mathfrak{g} be a classical simple complex Lie algebra in its standard representation as a Lie subalgebra of $\mathfrak{g l}(m)$, for some m. We endow the latter Lie algebra with the invariant metric $(X, Y)=\operatorname{tr}(X Y)$. Recall that this metric remains non-degenerate when restricted to \mathfrak{g}. We use the induced metric on \mathfrak{g} to identify $\mathfrak{g} \cong \mathfrak{g}^{*}$.

We define the following tri-linear form on \mathfrak{g} :

$$
(X, Y, Z) \longrightarrow(X Y+Y X, Z), \quad X, Y, Z \in \mathfrak{g}
$$

This form is symmetric (because $\operatorname{tr}(A B C)=\operatorname{tr}(C A B)$) and \mathfrak{g}-invariant. (For example, take G to be the compact Lie group corresponding to the compact real form of \mathfrak{g} and use $\operatorname{tr}\left(g A g^{-1}\right)=\operatorname{tr}(A), g \in G$, to get G-invariance, which implies \mathfrak{g}-invariance.)

So we have the promised invariant symmetric tensor provided our tri-linear form is not identically zero. This is the case for $\mathfrak{g}=\mathfrak{s l}(n), n \geq 3$: Take $X=Y$ having their upper left 2×2 block equal to $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and all other entries are zero. Take Z to be the diagonal matrix $\operatorname{diag}(1,0, \ldots, 0,-1)$. We have $(X, Y, Z) \rightarrow 2 \neq 0$, as desired.

We now demonstrate that the construction "fails" for the other classical algebras - the symplectic and orthogonal Lie algebras (hence also for $\mathfrak{s l}(2) \cong \mathfrak{s p}(1))$. We only need to know that each of these algebras is defined as the set of matrices $X \in \mathfrak{g l}(m)$ satisfying

$$
\begin{equation*}
X^{t} A+A X=0 \tag{1}
\end{equation*}
$$

where A is a certain invertible matrix. Simple computations yield the following two results:

- If X, Y satisfy (1), then $Z=X Y+Y X$ satisfies

$$
\begin{equation*}
Z^{t} A-A Z=0 \tag{2}
\end{equation*}
$$

- If X satisfies (1) and Z satisfies (2), then $(Z X)^{t}=-A(X Z) A^{-1}$, hence

$$
\operatorname{tr}(X Z)=0
$$

Clearly, these results complete our demonstration.

