From Stonehenge to Drinfel'd Skipping all the Details
University of California at Berkeley Colloquium, April 20, 2000
Dror Bar-Natan, Hebrew University and MSRI
Announcement: More on the same everyday next week, 12 at Evans 939.

Michelangelo

Disclaimer

1. We'll concentrate on the beauty and ignore the cracks.
2. The speaker is an idiot. picture taken by a flatbed scanner,
$\begin{array}{ll}\text { The } \\ \begin{array}{l}\text { Gaussian } \\ \text { linking }\end{array} & l k(\bigcirc)=\frac{1}{2} \sum_{\begin{array}{c}\text { vertical } \\ \text { chopsticks }\end{array}} \text { (signs) }\end{array}$ number Carl Friedrich Gauss

$\langle D, K\rangle_{\text {而 }}:=\binom{$ The signed Stonehenge }{ pairing of D and $K}:$

$K=$

$$
\text { , } D,
$$

The generating function of all stellar coincidences:
$Z(K):=\lim _{N \rightarrow \infty} \sum_{3 \text {-valent } D} \frac{1}{2^{c} c!\binom{N}{e}}\langle D, K\rangle_{\text {歀 }} D \cdot\left(\begin{array}{c}\text { framing- } \\ \text { dependent } \\ \text { renormalization }\end{array}\right) \in \mathcal{A}(\circlearrowleft)$

When deforming, catastrophes occur when:

A plane moves over an intersection point -
Solution: Impose IHX,

(see other side)

An intersection line cuts through the knot Solution: Impose STU,

(similar argument)

The Gauss curve slides over a star -
Solution: Multiply by a framing-dependent counter-term.
(not shown here)

Theorem. Modulo Relations, $Z(K)$ is a knot invariant!

Definition. $\quad V$ is finite type (Vassiliev) if it vanishes on sufficiently large alternations as on the left.
Theorem. All knot polynomials (Conway, Jones, etc.) are of finite type.
Conjecture. (Taylor's theorem) Finite type invariants separate knots.
Theorem. $\quad Z(K)$ is a universal finite type invariant! (sketch: to dance in many parties, you need many feet).

Related to
Lie algebras

And to Feynmann diagrams for the Chern-Simons-Witten theory:

$$
\int_{\mathfrak{g}-\text { connections }}^{\mathcal{D} A \text { hol }_{K}(A)} \exp \left[\frac{i k}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right]
$$

Computing $Z(K)$:
\bigcirc "Crossing change" is not well defined!
(-) Switch to Embedded Trivalent (ribbon) Graphs:

Easy, powerful moves:

Using moves, ETG is generated by ribbon twists and the tetrahedron

blue: blueprint red: computed Modulo the relation(s):
 $=$

(+more)
Claim. With $\Phi:=Z(\Delta)$, the above relation becomes equivalent to Drinfel'd's pentagon equation of the theory of quasi-Hopf algebras:
$(11 \Delta)(\Phi) \cdot(\Delta 11)(\Phi)=(1 \Phi) \cdot(1 \Delta 1)(\Phi) \cdot(\Phi 1)$
This handout is at
http://www.ma.huji.ac.il/~drorbn/Talks/UCB-000420

