Dror Bar-Natan: Talks: Utah-0506:
Local Khovanov Homology

What is it? A cube for each knot/link projection;
Vertices: All fillings of \sim with (or with .
"God created the knots, all else in topology is the work of mortals"

$0 * 1$

Edges: All fillings of $I \times I=$

Where does it live? In $\operatorname{Kom}(\operatorname{Mat}(<\operatorname{Cob}>/\{S, T, G, N C\})) /$ homotopy
Kom: Complexes Mat: Matrices Cob: Cobordisms <...>: Formal lin. comb.
$S:-0$

$G: \circlearrowleft \infty=0$
$N C: 2\left[\begin{array}{l}\infty \\ \vdots\end{array}\right]+\cdots$

The case of
tangles:

More crossings?
ت

Computable! via "complex simplification":

The Reduction Lemma. If ϕ is an isomorphism then the complex

$$
[C] \xrightarrow{\binom{\alpha}{\beta}}\left[\begin{array}{l}
b_{1} \\
D
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
\phi & \delta \\
\gamma & \epsilon
\end{array}\right)}\left[\begin{array}{l}
b_{2} \\
E
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
\mu & \nu
\end{array}\right)}[F]
$$

is isomorphic to the (direct sum) complex
$[C] \xrightarrow{\binom{0}{\beta}}\left[\begin{array}{l}b_{1} \\ D\end{array}\right] \xrightarrow{\left(\begin{array}{cc}\phi & 0 \\ 0 & \epsilon-\gamma \phi^{-1} \delta\end{array}\right)}\left[\begin{array}{l}b_{2} \\ E\end{array}\right] \xrightarrow{\left(\begin{array}{ll}0 & \nu\end{array}\right)}[F]$

So what?

* Computable to 50-100 crossings!
* Extremely easy to prove invariance!
* A localized relation with Kauffman's bracket.
* Easily generalizes to surfaces, virtuals, etc. * Better understanding of functoriality.
* Removing G and replacing NC with 4Tu yields a more general theory!
invariant.
* Will shed light on mutation invariance.
* May shed light on Lee's theory.
* May shed light on Rasmussen’s
ck.

