FUNDAMENTAL CONCEPTS IN DIFFERENTIAL GEOMETRY **FALL 2000** EXERCISES HANDOUT # 14

- 1. Let M^n be a manifold. Show that the following definitions of orientability are equivalent.
 - (a) There exists a never vanishing n-form on M.
 - (b) There exists an atlas $\{U_{\alpha}, \varphi_{\alpha}\}$ for M, such that if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $\det \varphi_{\alpha} \varphi_{\beta}^{-1} > 0.$
- **2.** Show that TM is always orientable.
- **3.** (a) Show that if M and N are orientable, then so is $M \times N$.
- (b) Show that if $M \times N$ and M are orientable then so is N.
- **4.** Show that S^n is orientable.
- **5.** Show that if M^n is a compact connected closed orientable manifold, then

$$H_{DR}^n(M) \neq 0$$
.

(a) Let $R_i: S^{n-1} \to S^{n-1}$ be the map

$$R_i: (x^1, \dots, x^i, \dots, x^n) \mapsto (x^1, \dots, -x^i, \dots, x^n).$$

Compute $R_i^*: H_{DR}^{n-1}(S^{n-1}) \to H_{DR}^{n-1}(S^{n-1})$. Compute also the induced map $A^*: H_{DR}^{n-1}(S^{n-1}) \to H_{DR}^{n-1}(S^{n-1})$ for the antipodal map A.

(b) Show that $\mathbb{R}P^n$ is not orientable if n is even (use the projection map $F: S^n \to \mathbb{R}P^n$).

- $\mathbb{R}P^n$.)
- 7. (a) Show that $H^1_{DR}(S^1) \cong \mathbb{R}$ via the $\omega \mapsto \int_{S^1} \omega$ homomorphism.
- (b)* Prove that if I is the unit interval M is a compact manifold and i_0, i_1 : $M \to M \times I$ are the obvious inclusions, then $i_0^* = i_1^*$. Use this to show that if f and g are homotopic maps $M \to N$, then $f^* = g^*$ and that i_0^*, i_1^* are isomorphisms. (Hint: Use what I have done in class to construct a suitable chain homotopy).
- (c) Show that $H^2_{DR}(S^2) \cong \mathbb{R}$ via $\omega \mapsto \int_{S^2} \omega$. (Hint: Try to split the sphere into the Northern and Southern hemispheres and use Poincré's Lemma.)

Date: 30 Jan., 2001.